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WHY DOES THE FOUNDATION OF ARTIFICIAL INTELLIGENCE 

DESERVE A NOBEL PRIZE IN PHYSICS?  
 

SUMMARY: The 2024 Nobel Prize in Physics was awarded to John Hopfield (Princeton University) 
and Geoffrey Hinton (University of Toronto) “for foundational discoveries and inventions that enable 
machine learning with artificial neural networks” [1, 2]. Even though their fundamental works 
contributed significantly to the development of today’s artificial intelligence, the community 
questioned whether a recognition with a Physics Nobel Prize falls in the appropriate discipline. 
However, the development of the fundamental artificial neural network models introduced by 
Hopfield and Hinton was inspired by spin glasses and is thus based on principles from many-body 
physics. 
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his year’s Nobel Prize in Physics caused puzzling debates in the community. The prize was 

awarded to John Hopfield (Princeton University) and Geoffrey Hinton (University of Toronto) 

“for foundational discoveries and inventions that enable machine learning with artificial neural 

networks” [1, 2]. While there is no doubt that a Nobel Prize is well deserved by the two researchers 

whose pioneering works laid the foundation for technologies that now shape our everyday life, many 

were confused about why it is Physics that lays claim on these fundamental developments. However, 

taking a closer look at the research behind the awards sheds some light into the discussion. 

HOPFIELD’S CONTRIBUTION: HOPFIELD NETWORKS 

Both Nobel laureates developed very fundamental network structures that revolutionized the field of 

machine learning with artificial neural networks [2]. John Hopfield’s major contribution was the 

introduction of Hopfield networks [3]. These consist of a set of neurons, which are binary units, 

interacting via symmetrically weighted, bidirectional all-to-all connections, as illustrated in Figure 1. 

The weights of these connections are learned when the network evolves to minimize a chosen energy 

function for a given input. The energy function 𝐸HN defined over a Hopfield network is given by 

𝐸HN = −
1

2
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where 𝑤𝑖,𝑗 = 𝑤𝑗,𝑖  is the connecting weight between neurons 𝑖 and 𝑗 with 𝑤𝑖,𝑖 = 0. The state of neuron 

𝑖 is denoted by 𝑠𝑖 ∈ {−1, 1}, where the index 𝑖 runs over all 𝑁 neurons in the network. By optimizing 

the connection weights 𝑤𝑖,𝑗  for a given input state 𝒔, Hopfield networks can recover patterns from 

noisy inputs, making them powerful candidates to deal with incomplete data [3]. The chosen setup of a 

fully connected network of binary units resembles a spin glass in condensed matter physics, specifically 

a Sherrington-Kirkpatrick model [4] and the energy function takes the familiar form of an Ising model, 

revealing the field and experience that inspired Hopfield’s work. 

 

 

Figure 1. Hopfield network with 𝑁 = 5 neurons 𝑠𝑖  and connecting weights 𝑤𝑖,𝑗 = 𝑤𝑗,𝑖. 

 

HINTON’S CONTRIBUTION: RESTRICTED BOLTZMANN MACHINES 

Similarly, Geoffrey Hinton introduced another fundamental network architecture, the restricted 

Boltzmann machine, a special case of the general Boltzmann machine [5], that finds applications in 

tasks like data generation [6] or classification [7]. Restricted Boltzmann machines consist of two layers 

of binary neurons, one interpretable visible layer and one hidden layer that characterizes the network’s 

expressive power and enables efficient network training and data generation [6, 8]. While there are 

weighted bidirectional and symmetric all-to-all connections between neurons from different layers, no 

intralayer connections are allowed in the restricted Boltzmann machine, as illustrated in Figure 2. 

Based on this setup, an energy is defined for the overall network which is minimized by optimizing the 

connection weights during the network training process. This energy term 𝐸RBM  is defined similarly to 

the energy in Hopfield networks, but takes the restricted connectivity into account, 

𝐸RBM = −∑𝑣𝑖𝑤𝑖,𝑗ℎ𝑗
𝑖,𝑗

−∑𝑎𝑖𝑣𝑖
𝑖

−∑𝑏𝑗ℎ𝑗
𝑗

. 

Here, 𝑣𝑖 ∈ {0,1} denotes the state of each visible neuron and, accordingly, ℎ𝑗 ∈ {0,1} denotes the state 

of each hidden neuron, where the indices 𝑖 and 𝑗 run over all 𝑁v visible and 𝑁h hidden neurons, 

respectively. The parameters 𝑤𝑖,𝑗  denote the connecting weights and 𝑎𝑖  and 𝑏𝑗  denote a bias factor for 
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the visible and hidden neurons, respectively, which are also optimized during the network training 

process.  Just like the Hopfield network, the restricted Boltzmann machine describes the Sherrington-

Kirkpatrick model [4] as a spin glass in an external field. Furthermore, from the network energy 𝐸RBM, a 

Boltzmann distribution 𝑃(𝒗, 𝒉) =
1

𝑍
exp[−𝐸RBM], with partition function 𝑍 as normalization constant, 

can be defined over all possible states of the neuron ensemble. By drawing samples of visible neuron 

configurations from the distribution encoded in the trained network, interpretable data can be 

generated. The specific network architecture of the restricted Boltzmann machine provides an efficient 

algorithm for sample generation. This ability led to novel achievements in tasks like image or text 

generation [6, 8].  

 

 

 Figure 2. Restricted Boltzmann machine with 𝑁v = 3 visible and 𝑁h = 4 hidden neurons 𝑣𝑖 and ℎ𝑗, 

connecting weights 𝑤𝑖,𝑗, and visible and hidden biases 𝑎𝑖  and 𝑏𝑗, respectively. 

 

Just like Hopfield networks, the introduction of the restricted Boltzmann machine as a fundamental 

artificial neural network architecture demonstrates the importance that physical models play in the 

field of machine learning and artificial intelligence. These developments show how the detailed 

understanding of spin glass models and the physical phenomena observed in those find applications far 

beyond many-body systems and directly affect commonly used technologies. The fact that physical 

principles have big impacts on computational algorithms clearly showcases how intertwined different 

research disciplines are and emphasizes the importance of collaborations to combine knowledge and 

approaches across specialized topics. 

Nowadays, Hopfield networks and restricted Boltzmann machines are outdated and have been 

replaced by advanced, more powerful artificial neural network architectures [9]. Those include 

recurrent neural networks, or transformer models whose immense strength is demonstrated in recent 

groundbreaking artificial intelligences like ChatGPT [10]. However, all these impressive advances are 

built on the foundation of Hopfield networks and restricted Boltzmann machines. The introduction of 

those models in the 1980s pointed out that artificial neural networks are more powerful than 
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experienced before and with this ended a decay period known as the AI winter. Together with the 

introduction of efficient learning algorithms for the restricted Boltzmann machine by Geoffrey Hinton 

and co-workers in the mid 2000s [11], they motivated the enhancements that led to today’s state-of-

the-art artificial neural network architectures. 

While physics has significantly inspired the fundamental developments of today’s artificial neural 

networks, at the same time artificial neural networks play an important role in the developments in 

state-of-the-art classical and quantum physics [12, 13]. Besides optimizing data evaluation, suggesting 

efficient experimental setups, or automatizing the tuning of experimental devices, artificial neural 

networks can be used for phase transition detection, to model quantum many-body systems, and 

more. Especially in the field of numerically simulating dynamics and ground states of quantum many-

body systems, restricted Boltzmann machines have been the driving force that initiated the field [14, 

15, 16, 17]. Early works used restricted Boltzmann machines as a general wavefunction ansatz and 

showed that such a general approach can accurately and efficiently model even higher-dimensional 

qubit systems. 

CONCLUSIONS 

Overall, there is a strong bidirectional connection between artificial neural networks and physics where 

one takes advantage of the other. While today’s artificial neural networks play a significant role not 

only in our everyday life but also in various fields of classical and quantum physics, we would not have 

reached this stage without many-body physics that inspired the fundamental developments of artificial 

neural networks. With this, the 2024 Nobel Prize in Physics has surely been awarded in the right 

discipline. In the end, physics has not laid claim on those fundamental developments with this Nobel 

Prize, it has rather always been the understanding and phenomena of physical models that made those 

developments possible. 
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