RELAXATION OF A SIMULATED LIPID BILAYER VESICLE COMPRESSED BY AN AFM

BY BEN M. BARLOW, MARTINE BERTRAND, AND BELA JOÓS

n water, phospholipids self-assemble to form closed membranes called *lipid bilayer vesicles* (Fig. 1). The lipids do this because they are amphiphiles: their tails are hydrophobic, but their heads are hydrophilic. The closed (vesicle) configuration, shown to the right in Fig. 1, is stable because it shields the (hydrophobic) tails from the surrounding water. At its foundation, the cell membrane is a lipid bilayer. In the context of the origin of life, that such closed membranes assemble spontaneously in nature is a very interesting fact.

Cells are very complicated mechanical objects—eukaryotic cells especially so—and vesicles have been attractive model systems for theoretical work, simulations and experiments.

SIMULATION SETUP

To investigate the viscoelastic properties of vesicles, we ran computer simulations wherein a vesicle is squeezed between two plates (Fig. 2).

This procedure is relevant to experiments^[3,6] which use an Atomic Force Microscope (AFM) to poke and squeeze and stretch living cells and vesicles. Our focus is on the *dynamics* of stress relaxation in the membrane, rather than static properties.

We use coarse-grained molecular dynamics^[1] in order to reproduce the basic characteristics common to all real bilayer membranes: thermal undulations, in-plane fluidity, intermonolayer friction, area compressibility and bending rigidity. The model (Fig. 2) consists of approximately 140,000 particles. Our vesicle is the same as was used in^[2], its membrane composed of coarse-grained lipids having one hydrophilic 'head' particle and two hydrophobic 'tail' particles (see inset in Fig. 2). At 3000

Ben M. Barlow, Martine Bertrand, and Béla Joós <bjoos@ uottawa.ca>,

Ottawa-Carleton Institute for Physics, University of Ottawa Campus, Ottawa, Ontario, Canada, K1N 6N5

SUMMARY

The relaxation time of bilayer vesicles, uniaxially compressed by an Atomic Force Microscope (AFM) cantilever, exhibits a strong force dependence. lipids, the membrane area is large enough to achieve the macroscopic properties described by continuum models. Fig. 2 omits the outer fluid particles that surround our small unilamellar vesicle. On the scale of our simulations, we treat a rounded AFM tip as approximately flat. For giant vesicles, this corresponds to a tipless AFM cantilever. The vesicle is compressed via a step force applied uniformly to each bead in the upper crystal (AFM), whose motion is constrained to the direction normal to the substrate.

DYNAMICS

Time evolution of the (triangulated) area strain α after we activate the squeezing force is described as an exponential saturation

$$\alpha(t) = \alpha_{\infty} \left(1 - e^{-t/\tau} \right) \tag{1}$$

(see Fig. 3). This viscoelastic creep response corresponds to the 'Kelvin-Voigt' model, or the more general

'Standard Linear Solid' model. In this model the relaxation time is $\tau \sim \eta/K$, where η is a viscosity and *K* is an elastic modulus.

RELAXATION TIME VERSUS TENSION

As it turns out, the relaxation time τ depends on the magnitude of the applied stress. In Fig. 4, we plot $\tau(\gamma)$ —relaxation time versus surface tension. (The tension, estimated via the α contribution to the work done compressing the vesicle, scales nearly linearly with the squeezing force.) The sharp rise in the vesicle's relaxation time at low force arises from the effect of entropic undulations on the area expansion.

We have fit the $\tau(\gamma)$ data using Equation 6, which we will now derive.

Thermal agitation excites undulations in the vesicle membrane. Due to these undulations, the surface area of a vesicle as measured in the lab will be less than the true surface area of its membrane. Hence a distinction is made between 'apparent' or 'projected' versus true surface area of the membrane. In 1984, Helfrich and Servuss (HS)^[4] derived an expression connecting the relative change in a membrane's apparent area ΔA to its surface tension γ :

$$\alpha(\gamma) \equiv \left(\frac{\Delta A}{A}\right)_{\gamma>0} = \underbrace{\frac{k_B T}{8\pi\kappa} \ln\left(\frac{\zeta\kappa}{A} + \gamma}{\frac{\zeta\kappa}{a} + \gamma}\right)}_{entropic} + \underbrace{\frac{\gamma}{K_A}}_{direct}, \quad (2)$$

where K_A , κ , A and a are the membrane's area compressibility modulus, bending rigidity, unstressed area and area per lipid, respectively. k_B is Boltzmann's constant, T is the temperature,

and ζ depends on membrane shape. (E.g. $\zeta = \pi^2$ for a planar membrane, and for a sphere $\zeta = 24\pi$.) For small $\Delta(\cdot)$ we know that

$$\Delta(strain) = \frac{1}{K} \Delta(stress) \approx \left(\frac{\partial(strain)}{\partial(stress)}\right) \Delta(stress).$$
(3)

For a stretching membrane *strain* = α and *stress* = γ , so that

$$\frac{1}{K} \equiv \frac{\partial(strain)}{\partial(stress)} = \frac{\partial\alpha}{\partial\gamma}$$
(4)

defines the stiffness of the apparent surface.

From the HS model and linear viscoelasticity theory, we derive the relaxation time

$$\tau(\gamma) \sim \eta\left(\frac{1}{K}\right) \approx \eta\left(\frac{\partial\alpha}{\partial\gamma}\right) \approx \eta\left(\frac{1}{K_A} + \frac{\frac{k_BT}{8\pi\kappa}}{\frac{\zeta\kappa}{A} + \gamma}\right).$$
(5)

A phenomenological form consistent with both the low and high tension limits of 5 is

$$\tau \approx C_1 + \frac{C_2}{C_3 + \gamma},\tag{6}$$

where C_1 is the high-tension asymptotic limit and $C_1 + \frac{C_2}{C_1}$ is the finite limit as $\gamma \to 0$. Going a step further, in Fig. 4 we have fit the entire $\tau(\gamma)$ curve with this function, which succeeds as a

phenomenological model. Though the fit extends beyond small $\Delta \gamma$, it yields a reasonable estimate of η/K_A .

CONCLUSION

The relaxation time depends on the magnitude of the applied stress, increasing sharply in the limit of low stress. This is caused by entropic undulations in the bilayer. Equation 5 predicts a *finite maximum relaxation time, proportional to the membrane's surface area*, so the effect should be *stronger* in cell-sized systems. Moreover, since undulations have been observed in real vesicles and cells, the force-dependence should be present in them as well. The connection between our vesicle's relaxation time, entropic undulations and the applied stress may help to explain the wide variability of relaxation (and recovery) times reported for cells^[3,5].

REFERENCES

- 1. J.A. Anderson, C.D. Lorenz, and A. Travesset, "General purpose molecular dynamics simulations fully implemented on graphics processing units", J. Comput. Phys., 227, 5342 (2008).
- 2. M. Bertrand and B. Jools, "Extrusion of small vesicles through nanochannels: A model for experiments and molecular dynamics simulations", *Phys. Rev. E*, **85**, 051910 (2012).
- 3. K. Haase and A.E. Pelling, "Resiliency of the plasma membrane and actin cortex to large-scale deformation", *Cytoskeleton*, **70**, 494 (2013).
- 4. W. Helfrich and R.-M, Servuss. "Undulations, steric interaction and cohesion of fluid membranes", Il Nuovo Cimento D, 3, 137 (1984).
- H. Karcher, J. Lammerding, H. Huang, R.T. Lee, R.D. Kamm, and M.R. Kaazempur-Mofrad, "A Three-Dimensional Viscoelastic Model for Cell Deformation with Experimental Verification", *Biophys. J.*, 85, 3336 (2003).
- 6. E. Schäfer, T.-T. Kliesch, and A. Janshoff, "Mechanical Properties of Giant Liposomes Compressed between Two Parallel Plates: Impact of Artificial Actin Shells", *Langmuir*, **29**, 10463 (2013).