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Coarse-grained simulations of highly driven 
DNA translocation from a confining nanotube

b y  Da v id  Sean  a n d  Ga r y  W. Sla te r

C onsider this brain teaser: How do you to pass a 
large knitted blanket to your cold friend waiting 
in a locked room where the only possible 
passage is a small keyhole in the door? The 

answer: simply find one of the two ends of the yarn and 
slowly thread it through the keyhole. As the blanket 
unravels on one side of the door it can be reconstructed on 
the other.

Entropy ensures that a long DNA chain stays as a 
random disordered mess in a liquid. Passing a long 
polymer like DNA from one side of a membrane to the 
other via a nm-scale hole can at first seem impossible. 
But much like the passage of the knitted blanket through 
the keyhole, a large DNA molecule can realize the 
“impossible” by simply unraveling itself. Since DNA is 
charged in solution, this process can be driven via an 
electric field.

imagine now that salt ions are present in the solution. 
These charged ions will also be driven to transit through 
the small opening, resulting in an ionic countercurrent 
that can be measured. Since the dividing membrane is 
electrically insulating, the electric field lines converge at 
the small hole and the measured conductivity is extremely 
sensitive to what is happening near the so-called 
nanopore. The passage of the DNA molecule will impede 
the ionic passage for the duration of the DNA 
translocation event. In the lab, this can be observed as a 
sudden drop in the electrical conductivity between the two 
chambers. Experimental translocation data is typically 
extracted from the duration and amplitude of a recorded 
drop in the measured current readout[1]. The duration of 
this current blockage can provide information on the
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We study the effect of pre-confining DNA in 
a small tube prior to driven translocation. 
Computer simulations are presented together 
with a theoretical Tension-Propagation model.

molecule such as its total curvilinear length. In this short 
report, we present computational work on using DNA 
translocation for applications where the focus is on 
determining the length of a piece of DNA.

There are many applications which require finding the 
length of the DNA molecules present in an unknown 
sample. For example, forensic DNA fingerprinting 
works by breaking a long DNA molecule into smaller 
fragments using restriction enzymes that cleave it at 
sequence-specific sites. The length distribution of these 
smaller DNA fragments constitutes the fingerprint. 
Traditional macroscopic sizing techniques relies on the 
separation of these smaller pieces at a population-level. 
That is, a single DNA molecule may need to be 
amplified multiple times in order to create a population 
of DNAs which will later be fragmented and size- 
separated.

Nanopore translocation techniques, as described above, 
can be integrated into portable lab-on-a-chip devices. 
These can be much faster, cheaper and easier to operate 
than traditional methods—and could potentially only 
require a single DNA molecule!

Oddly, with a sample solution where all the DNA molecules 
are identical in size, experimental distributions of translo­
cation times are found to be surprisingly wide. The reason 
for this is an example of molecular individualism, an 
expression coined by Pierre-Gilles de Gennes[2].

Figure 1a depicts a handful of possible DNA shapes—or 
conformations—at the moment when the translocation 
process begins (the first monomer is inside the pore). As 
is obvious from the figure, we are using here a rather 
coarse-grained representation of DNA—a simple chain 
of beads and springs. The generic polymer model of 
N  = 100 beads is described in more details in ref [3]. 
The focusing of the electric field inside the pore 
completely dwarves its effect outside the pore. This 
permits us to simplify the problem further: the effect of
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Fig. 1 (a) Placing a tube (depicted as dashed lines) removes
many of the conformations found in the absence of such 
a tube. (b) Simulation histograms of the translocation 
time. Top: Three tube-free cases obtained by using the 
same initial conformations for multiple events. Bottom: 
results arising from different conformations using a 
typical translocation setup (no tube) and results from 
using three different infinitely long tubes.

the driving field is modeled as a force only applied to the 
beads present inside the nanopore.

We show in Fig. 1b the corresponding histograms of translo­
cation times. The top panel is generated by repeating the 
simulation with the same conformation, but with different 
Brownian trajectories. A remarkable feature is how the 
different distributions are centred about their own mean 
translocation times. Since the translocation process occurs 
much faster than the time it takes for the polymer to relax 
(typically by two orders of magnitude), the exact positions of 
all the beads at the onset of translocation is a determining 
factor in the resulting transit time. In the lab, one cannot 
explicitly control for the shape of the DNA molecule once the 
first bead enters the pore. The resulting histograms contain a 
large mix of possible shapes yielding a rather wide distribution 
of translocation times for what is in essence a group of 
chemically-identical molecules! Indeed, the bottom panel of 
Fig. 1b shows how wide the distributions can become. Thus 
one way to tighten them would be to somehow limit the range 
of initial DNA conformations. in Fig. 1a there is a schematic 
of a confining tube which we use as a way to limit the 
possible initial conformations. We will assume that this 
hypothetical tube is made of a porous material such that it 
does not significantly affect the flow of ions or distort the 
field lines.

We report here the use of long (longer than the polymer) 
confining tube characterized only by its diameter j T. By 
construction, the tube will limit the range of possible con­
formations, which by virtue of our preceding argument, should 
reduce the width of the distribution of translocation times.

We first generate a DNA conformation that has its first bead 
inside the nanopore. The presence of the tube imposes a hard 
cutoff r  =  j T/2 in the radial positions of the remaining beads. 
For entropic reasons, a polymer chain does not like to be 
compressed. When we impose radial restrictions, it reacts by 
swelling outwards in the axial direction. As a side-effect, a thin 
tube will tend to squeeze out the DNA away in the axial 
direction. This means that the remaining monomers will on 
average be positioned further from the pore and will need to 
travel longer to translocate to the other side, as shown in the 
insets of Fig. 2a.

Although it may seem that this “distancing” effect alone should 
yield longer translocation times, there is another—perhaps 
subtler—contributing factor relating to the translocation rate. 
Let us investigate this according to what is known as the 
Tension-Propagation Theory[4].

In these out-of-equilibrium dynamics of translocation, the 
driving force causes a tension that propagates down the 
polymer (see red beads in Fig. 2b). i f  we neglect the crowding 
of monomers on the trans-side and friction in the nanopore— 
which contribute to minor corrections—a force-balance argu­
ment can be made to show that the instantaneous translocation 
rate is proportional to the number of monomers that feel this 
tension.

Consider the forces acting on the bead inside the pore in 
Fig. 2b. In the overdamped limit, the driving force Fd applied 
to this bead is balanced by the drag force of all moving beads 
under tension (coloured in red). Every bead contributes to a 
viscous force — ζν, with ζ the bead’s friction coefficient and 
v the velocity. If there are k beads moving together as shown in 
Fig. 2b (red beads), then the total friction resisting the applied 
force is — kZv which enables us to find the translocation rate 
(or terminal velocity) of v =  F d/kZ. Since the driving force F d 
and the friction coefficient ζ are known quantities, the resulting 
rate can be determined for every step of the process if we can 
find how many beads are affected by the applied force, i.e., 
how tension propagates.

Note that the beads outside the tension front do not (yet) 
contribute to this resistance. In fact, these beads do not even 
know that translocation has started. Since we consider the 
limit where the process is highly driven, a geometrical 
argument can be made to estimate the number of monomers 
under tension once the tension front reaches a specific bead. 
Figure 2b shows how the initial position of the ith bead can 
be used to estimate the number of beads under tension once 
the tension front reaches it. Since the monomers under 
tension form a taught segment, the distance Ri between the 
ith bead and the pore can be used to find the number of moving 
monomers (and the translocation rate) once the tension front 
reaches it.
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Fig. 2 (a) The coefficient of variation a j  (τ') plotted for different tube radii. (b) A free-body diagram centred on
the bead inside the nanopore. The drag from the beads under tension (red) opposes the force applied in the 
pore F d. The i,h bead’s initial distance R, is used to find the amount of beads under driven motion (red) 
once the tension front has reached it.

This picture highlights why the initial conformations matter so 
much in determining the total translocation time: the initial 
positions essentially determine what values of viscous damping 
is felt by the polymer during translocation. Thin tubes will 
yield longer translocation events because it also causes the 
system to sample what is effectively a higher amount of 
viscous damping. Imagine pulling a heavy 1 km long chain 
lined-up straight on a road, versus pulling a similar chain but 
which is instead neatly coiled in a pile. Displacing the lined-up 
chain would require moving all the links in unison, whereas in 
the coiled version, you would be able to move the chain tip for 
a fair amount before the accumulated drag would become 
overwhelming.

The total translocation time τ  can be determined by integrating 
the rate. This is a two-step process: there is the time needed to 
propagate to the last bead and a time for the final retraction[3].

Combining them gives a total translocation time which can be 
written as

f  f Ns = R, di,
F d Jo i ’

where the information in the initial conformation is completely 
captured by the list of initial monomer distances Ri (see 
Fig. 2b). Averaging the above, we obtain the mean transloca­
tion time ( τ )  = (N (R )F d. Note that small tube diameters not 
only reduce the standard-deviation στ because they limit 
conformations, but also increase the mean translocation time 
( τ )  by pushing the beads away from the pore and increasing 
the friction. These two effects work together in reducing the 
coefficient of variation στ/ ( χ )  four-fold, as shown in Fig. 2a. 
When using a given mixture of multiple DNA fragments, 
decreasing the coefficient of variation στ/ ( χ )  means that DNA 
sizing can be obtained a higher resolution.
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