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Instability Processes for Magnons in 
Ferromagnetic Nanostructures

b y  Mic h a e l  G. Co tta m  a n d  Za h r a  Ha g h s h e n a s f a r d

A n understanding of the magnetization dynam
ics, both linear and nonlinear, in ordered 
magnetic materials such as ferromagnets is of 
fundamental interest and also has applications 

for various high-frequency and switching devices in the 
expanding fields of spintronics and magnonics. Here we 
describe some nonlinear processes in ultrathin films and 
nanowires, where the fundamental excitations of the 
systems, known as spin waves or magnons, are strongly 
influenced by their spatial confinement in the nanosystem 
and can be driven into a decay instability by application 
of a microwave-frequency electromagnetic wave above a 
high-power threshold level.

INTRODUCTION

A description of the wave-like fluctuations in unbounded 
ferromagnets (i.e., where boundary effects are negligible) 
in terms of “spin waves” is well known and given in most 
solid-state physics and magnetism textbooks [1,2]. When the 
quantum-mechanical nature of the spin operators is taken 
into account, the excitations are called “magnons”, by 
analogy with phonons as the quantized lattice vibrations in 
a solid. it is often helpful to picture magnons schematically 
as in Fig. 1 in terms of arrays of precessing spin vectors, 
where there is a small change of phase (related to the wave 
vector) from any one spin to a neighbouring spin. in this 
semi-classical viewpoint the precession of a spin vector 
takes place due to the torque from an effective magnetic 
field that incorporates all the magnetic interactions with 
other spins as well as any applied magnetic field. in simple 
cases (such as at low temperatures compared with the Curie 
temperature TC) the angle of precession is small, meaning 
that the component of the spin vector along the direction of 
net magnetization remains approximately constant.

Summary

The nonlinear magnetization dynamics in 
ferromagnetic nanostructures are studied 
through the parametric instabilities of the 
interacting magnons in thin films and nano
wires under microwave pumping.

The dispersion relation of the magnons, which gives the 
angular frequency v (k) of precession in terms of the wave 
vector k, depends on the nature of the interactions. These 
arise mainly from (a) the short-range exchange interac
tions, which are quantum-mechanical in nature and are due 
to the overlap of wave functions on neighboring atoms, and 
(b) the long-range magnetic dipole-dipole interactions as 
in classical electromagnetism. i f  a Hamiltonian formalism 
is employed, the contributions to the energy from these 
terms [1~3] are, respectively, proportional to J(r12)S1 -S2 and 
l |[ S 1 · S2 — 3(S1 · r 12)(S2 · r  12)]/ r i2, where subscripts 1 
and 2 label spin operators at different atomic sites at 
a distance r12 apart connected by unit vector r 12. The 
interaction strength Jbefore the exchange term is important 
typically only between nearest neighbours, whereas the 
weaker dipolar terms (with μΒ denoting the Bohr magne
ton) have a more complicated directional dependence and 
fall off slowly like 1 /r \2.

A simple calculation of the magnon frequency, applicable 
for the one-dimensional (1D) system in Fig. 1 with the 
assumption that only exchange effects occur, is given, for 
example, in the book by Kittel [1]. This is based on using 
the torque equation of motion for each spin vector and 
seeking travelling-wave solutions for the fluctuating 
components. The final result is that ω increases as the 
1D wave vector k increases, being proportional to SJ(ka)2 
at small wave vector such that ka «  1, where a is the 
distance between spins and S  is the spin quantum number.

Applied magnetic field f  Wave propagation

Fig. 1 Schematic illustration of a spin wave (or magnon), 
taking for simplicity a long line of spin vectors 
(red arrows), undergoing precession about the 
direction of net magnetization, defined by the 
applied magnetic field. One complete wavelength 
of propagation is depicted, where the dashed line 
joining the heads of arrows is drawn as a guide to 
the eye to highlight the wave-like character.

Michael G. Cottam 
< cottam@uwo.ca>

and

Zahra
Haghshenasfard
< zhaghshe@uwo.ca>

Department 
of Physics and 
Astronomy, 
University of 
Western Ontario, 
London, ON 
N6A 3K7

La Physique au Canada / Vol. 72, No. 2 (2016) · 63



Instability Processes for Magnons . . .  (Cottam/Haghshenasfard)

This result would be modified if effects due to dipolar terms 
and an applied magnetic field were included [2,3].

interactions, whereas four-magnon scattering has contributions 
coming from both the exchange and dipolar interactions [2,3].

A general consequence of the competing interactions is that in 
reciprocal space, when a Fourier transform is made to a wave- 
vector representation, the exchange terms dominate at medium 
and large wave vectors in the Brillouin zone, but the dipolar 
terms are important at small enough wave vectors. Typically in 
bulk ferromagnets the dipolar terms need to be included for 
wave vectors less than about 1/100 of the Brillouin zone 
boundary value, which is relevant for experimental techniques 
such as ferromagnetic resonance (FMR) and Brillouin light 
scattering (BLS) that probe the so-called magnetostatic and 
dipole-exchange regimes [2,3].

INTERACTING MAGNON GAS
The magnons, when treated in the simplest linear-wave 
approximation can be shown to behave as bosons, and the 
number of thermally-excited magnons with energy r®(k) is 
described by the Bose-Einstein distribution function. In reality 
the magnon states are not exact eigenfunctions of the Hamilto
nian, and consequently the magnons constitute a weakly 
interacting boson gas. In the semiclassical spin-wave picture, 
the origin of the magnon-magnon interactions is associated with 
the role of the finite angle of spin precession in changing the 
longitudinal spin projection. Quantum mechanically the spin 
operators, which are analogous to the orbital angular momentum 
operators, do not satisfy the boson commutation relationships, 
and a mathematical transformations between spin operators and 
boson operators has to be applied [2,3].

The Hamiltonian for the interacting magnon gas of a ferromag- 
net, in the notation of second quantization, can be expressed as

H  = X  x  (k)b+bv  +  H  (3) +  H  (4) +  ··· (1)
k,i

in leading order (at temperatures well below Tc), apart from a 
constant term. Here b^ l and bkl are the creation and annihilation 
operators, respectively, for a magnon of wave vector k and 
branch l. For a bulk (effectively unbounded) material we have 
only l =  1, but this will not generally be so for nanostructures. 
The first term on the right of Eq. (1) has a form similar to that 
for the treatment of a simple-harmonic oscillator in quantum 
mechanics. The next two terms, H 3) and H 4), describe the 
leading-order three-magnon and four-magnon interaction pro
cesses, respectively. The first of these involves operator 
products like b+, b+ bk l and its Hermitian conjugate, which
represent magnon splitting (i.e., a magnon is annihilated and 
two magnons are created) or the corresponding confluence. The 
last term in Eq. (1) involves products of four boson operators, 
e.g., two creation and two annihilation operators as for a pair of 
magnons scattering off one another to produce two other 
magnons with different wave vectors. It can be shown that the 
three-magnon processes are due to magnetic dipole-dipole

MAGNONS IN NANOSTRUCTURES

As mentioned, the magnons for a simple bulk ferromagnet in 
three dimensions are characterized by a 3D wave vector k and 
the branch label l is single-valued. By contrast, in magnetic 
nanostructures, where one (or more) of the spatial dimensions is 
of order tens or hundreds of nanometres, the magnons are 
spatially confined and are required to satisfy boundary condi
tions at the surfaces or interfaces. In a thin film, for example, the 
magnons are characterized by a 2D wave vector in the directions 
of translational symmetry parallel to the surfaces. For the 
direction perpendicular to the surfaces, the magnons may either 
take a standing-wave form with a quantized value for the third 
wave-vector component, or they may be localized with amp
litude decaying away from one or both surfaces. Likewise in a 
nanowire there is a 1D wave vector along the length and 
standing-mode behaviour or localization in the other two 
directions.

An example is given in Fig. 2 showing the calculated dispersion 
relations for the lowest magnon branches in a Permalloy 
(Ni80Fe20) nanowire stripe with rectangular cross section 
50 nm by 10 nm and in a longitudinal applied magnetic field 
o f0.202 T. The frequencies, which were obtained using a micro
scopic dipole-exchange theory [4] in which magnon interactions 
are ignored, are plotted versus the 1D wave vector in the small |k |

Fig. 2 Dispersion relations, showing frequency versus 1D 
longitudinal wave vector, calculated for the lowest 
quantized magnons in a Permalloy nanowire (see 
text). The horizontal line labeled P is drawn at one 
half of the pumping frequency considered later.
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regime accessible by FMR and BLS measurements. The initial 
dip for some branches, which is more pronounced for the lowest 
branch and has been confirmed experimentally, is due to the 
dipolar interactions competing with the exchange that eventually 
dominates at larger |k |.

MAGNON INSTABILITIES UNDER MICROWAVE 
PUMPING

Typically FMR experiments are carried out at relatively low 
power levels; an oscillating magnetic field at microwave 
frequency is applied to a ferromagnet in a direction transverse 
to the magnetization direction. The microwave field can couple 
linearly to the oscillating magnetic moment of a magnon such 
that there is a resonant absorption of energy when a match is 
achieved (e.g., by scanning the static applied field) between the 
microwave frequency and the precessional frequency of the 
magnon [1]. Measurement of the FMR linewidth can yield 
information about the magnon damping (or reciprocal lifetime). 
This is long established for macroscopically large samples, but 
for nanostructures such as nanowires the experimental [5] and 
theoretical [6] studies are quite recent.

For bulk samples it was noticed that, when the signal power was 
increased in FMR experiments, the absorption strength for the 
main resonance reached saturation (instead of increasing further) 
and a subsidiary resonance appeared at higher frequency [7]. 
subsequently these nonlinear effects with perpendicular micro
wave pumping were explained by Suhl [8] in terms of parametric 
instabilities involving the three- and four-magnon processes, 
respectively. They are now known as the first-order and second- 
order suhl processes, respectively. An analogous instability 
under parallel microwave pumping was later identified by 
Schlomann and others [9]. The three types of processes are 
depicted schematically in Fig. 3; there are several reviews 
(mainly for macroscopic samples) giving details [2,3,10].

The outcome in all three processes is the production of a pair of 
magnons with wave vectors k and - k of equal magnitude, 
implying that they have the same frequency. Parallel pumping 
(Fig. 3a) relies on the fact that the dipolar interactions cause the 
spin precession to be elliptical rather than circular. Hence the 
parallel (or longitudinal) components of the spin vectors, which 
are coupled to the pumping field, fluctuate resulting in the 
excitation of a magnon pair. The first- and second-order Suhl 
processes (Figs. 3b and 3c) involve the excitation initially of 
one (or two) uniform-precession magnons, meaning modes 
with k =0, followed by the production of the magnon pair via 
the H 3  and H 4) interaction terms. From considerations of 
energy conservation it follows that the angular frequency of 
each magnon produced in the parallel pumping and first-order 
Suhl processes is Aœp whereas in the second-order Suhl 
process it is v p.

In a nanowire, however, the absence of wave-vector conserva
tion in the directions perpendicular to its length gives two
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Fig. 3 Schematic representation of the three parametric 
instability processes under pumping by a microwave 
field: (a) parallel pumping, (b) first-order Suhl 
process, and (c) second-order Suhl process. The last 
two processes occur in perpendicular pumping and 
involve intermediate uniform-precession (zero wave 
vector) magnons.

Fig. 4 Threshold field ratio (see text) plotted as a function 
of applied magnetic field for the same Permalloy 
nanowire as in Fig. 2, calculated for parallel pump
ing with frequency ojp/2% = 35 GHz. The points A, 
B, and C are at field values related to features on the 
previous dispersion curves, as explained.
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distinctive features from the macroscopic case: the interaction 
processes involve a “mixing” between different magnon 
branches, and there are strong density-of-states effects for the 
magnons due to the spatial confinement. When the threshold 
strengths of the pumping field for the onset of an instabilility in 
any magnon branch are calculated (using techniques analogous 
to those for ultra-thin films [11,12]), we obtain results as in 
Fig. 4 for the same Permalloy nanowire considered in Fig. 2. 
This shows the dimensionless threshold field ratio (convention
ally defined as the threshold field amplitude divided by the 
FMR half-linewidth in magnetic field units) plotted against the 
applied field for parallel pumping. Referring to the dispersion 
curves, the horizontal line P in Fig. 2 is drawn at half of the 
pumping frequency, which corresponds to production of 
the parametric magnons. With an applied field of 0.202 T, for 
which Fig. 2 is drawn, the line P coincides with the minimum in 
the lowest magnon branch. When the applied field is scanned up 
(or down) in value, the line P moves down (or up) relative to the 
dispersion curves. For fields above 0.202 T the line does not 
intersect with any magnon branch, and so the instability 
threshold rapidly increases. This explains the special point 
labeled C in Fig. 4. For lower applied field values there may in 
general be one or more intersection points, and so the decay is 
allowed. For nanostructures (as in this example) certain features 
on the discrete spectrum become emphasized, by contrast with 
the smooth behaviour (the so-called “butterfly” curve) found for

macroscopic samples [2,3]. Thus we may associate points 
labeled B and A in Fig. 4 as corresponding to when line P 
coincides with the k = 0  magnons of the lowest and next-lowest 
branches, respectively. Other structural features can be attrib
uted to density-of-states effects for the quantized magnons.

CONCLUSION
It is of great interest currently to extend the work on magnon 
instabilities to other types of magnetic nanostructures and to 
their arrays (as in magnonic crystals). Also, recent experiments 
have reported the observation of a Bose-Einstein condensation 
(BEC) in a macroscopic magnon gas at room temperature [13] 
when driven far from equilibrium by an intense microwave 
pumping field. A macroscopic theoretical interpretation [14] 
was subsequently developed by utilizing the form of the three- 
and four-magnon interaction terms. Investigation of the 
possible occurrence of a magnon BEC in a magnetic nanos
tructure with spatially-confined magnons is an intriguing topic.
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