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M odels describing strongly correlated lattice 
quantum systems have been the focus of 
intense theoretical studies in the past decade. 
The Fermi-Hubbard hamiltonian, potentially 

being the minimal model explaining high Tc 
superconductivity[2], and the Bose-Hubbard hamiltonian 
exhibiting the superfluid (SF)-Mott-insulator (Mi) phase 
transition[3], are two paradigmatic examples. These 
models, although simple, are highly non-trivial as they 
reveal the important many-body physics of strongly 
correlated systems. Moreover, they can be experimentally 
realized using atomic and molecular quantum gases 
trapped in optical lattices [4,5].

enough confinement provides the collisional stability of 
the setup [8] and creates a large potential barrier between 
the two layers which suppresses tunneling, thus 
preventing inter-layer hopping. The particles are further 
confined in plane by a 2D optical lattice with harmonic 
frequency ω and lattice spacing a. When to  > d2/a3, kBT 
(where d is the induced dipole moment and T the 
temperature), tunneling to an already occupied site is 
strongly suppressed[9], and particles can be treated in the 
hard-core limit.

The system is described by the extended Bose-Hubbard 
model:

More recently, due to experimental progress in trapping 
ground state polar molecules with strong electric dipole 
moments [7], and atoms with large permanent magnetic 
moments[6], quantum models with tunable, long-range 
and anisotropic interactions are within reach. Hence 
theoretical understanding of such systems is timely and 
compelling.

in the following letter we study a system consisting of 
dipolar particles confined in a pair of two-dimensional 
(2D) optical lattice layers, and with dipole moments 
polarized perpendicular to the planes. As a result of the 
anisotropic and long-range nature of the dipolar 
interaction between the particles, exotic quantum phases 
such as the pair-supersolid (PSS) and pair-superfluid 
(PSF) [among others] can be stabilized and survive up to 
temperatures of the order of nK. The schematic of this 
setup is shown in the top right panel of Figure 1(b). The 
2D confinement is achieved by using a strong transverse 
trapping field, e.g. a 1D optical lattice with harmonic 
oscillator frequency ωζ and lattice spacing dz. A large

Su m m a r y

We present the zero temperature phase 
diagram of a system of ultra-cold bosons in 
a bilayer optical lattice as well as the finite 
temperature behavior of these phases using 
Quantum Monte Carlo (QMC) simulations by 
the Worm Algorithm (W A )[1].
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where i, j refer to the lattice sites, α, β refer to the layers 
and ai α and aL α are the bosonic creation and annihilation 
operators respectively, with (aL α)2 = 0, niα = aL α a;. α. 
< > denotes summation over nearest neighbors only. The 
first term in the Hamiltonian describes the kinetic energy 
with in-plane hopping rate J. The second term is the 
dipole-dipole interaction given by

Vi, a j  = Cdd/4rt[(1 - 3cos 2 0 ^ - ^ / ]

where Cdd = d A 0̂ 0d2) for electric (magnetic) dipoles. 
Lastly μ is the chemical potential which sets N, the 
number of particles present in the system.

in this setup the in-plane dipolar interaction, Vdd, is 
repulsive and isotropic while the interlayer interaction is 
anisotropic. We denote the repulsive nearest neighbor 
intralayer interaction by Vdd = Cdd / ^ a 3 and the attractive 
interlayer dipole-dipole interaction between dipoles sitting 
on top of each other by Vddz = 2Cdd/4n;dz3. We 
can tune the relative strength Vdd/Vddz over a wide 
range of values by changing dz. In what follows we 
consider same type and number of particles on each layer, 
and choose dz = 0.36a so that Vddz/J < 10 at half filling 
factor[10]. This choice allows us to access a parameter 
regime where particles on the same lattice site but on 
different layers can pair up to form a composite object. For
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a gas of RbCs molecules with d .1.25 D the above conditions 
will be satisfied for a < 500nm and dz < 200 nm at J < 120hHz.

We present results based on path integral Quantum Monte 
Carlo simulations by a two-worm algorithm [11] which allows 
for efficient sampling of paired phases. We have performed 
simulations of L x L =N sites square lattices with L = 8,12,16, 
20 and 24. We have set the dipole-dipole interaction cutoff 
to the third nearest neighbor. We found that, while using a 
larger cutoff did not change the simulation results (within error 
bars), super-solid phases (see below) cannot be stabilized at 
lower cutoff values.

The zero temperature phase diagram of model (1) is shown in 
Figure 1(a). The latter is symmetric about n = 0.5 due to the 
particle-hole symmetry (a consequence of the hard-core 
constraint). The observed phases are sketched in Figure 1(b).
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Fig. 1 (a) The zero temperature phase diagram of (1) as a function
of the in-plane dipole-dipole interaction V ^ /J  and the 
filling factor n. The diamonds show the QMC simulation 
results. in cases where the error bars are not visible, the 
error is within the symbol size. We were not able to resolve 
the phase boundaries in the shaded region. (b) A schematic 
representation of the phases. Each cloud represents an 
independent superfluid in the 2SF phase while the cloud in 
the PSS and PSF phases is a superfluid of the pairs.

At half-filling, n = N/Nsites = 0.5, when the in-plane repulsion 
is strong enough, i.e. Vdd/J $ 0.21 ± 0.05, a checkerboard (CB) 
solid of pairs (with every other site in each layer occupied) is 
stabilized. At this filling factor, the most energetically 
favorable configuration is a perfect CB crystal. The CB solid 
order is characterized by zero superfluidity and finite structure 
factor for each layer:

5 (k ) =N Σexp [ik (r -  r ’)](nrnr·) (2)
r ,r '

at reciprocal lattice vector k = (π,π). In this phase ψ;·α = ψiβ = 
Ψ = 0 where ψiα = (aia) is the single-particle order parameter 
and Ψ = (aia a^) is the pair order parameter. In the paired CB 
phase atoms across the layers are strongly paired due to 
attractive interlayer interactions. Hence the particles sit on top 
of each other and the system can be envisioned as a solid of 
pairs [12’13].

Upon doping the CB solid with particles or holes we enter the 
PSS phase. The latter displays both, broken translational 
symmetry, Sfa^) = 0, i.e. diagonal long range order, and non­
vanishing pair order parameter Ψ, i.e. off-diagonal long range 
order, while ψ;α = ψ^ = 0. Figure 2(a) shows Sfa^) (left 
y-axis) and the superfluid stiffness of pairs ppss (right y-axis) 
as a function of n, at Vdd/J = 0.238 for different system sizes. 
Both quantities are non-zero for a finite range of densities

Fig. 2 (a) The structure factor SO ^) (solid lines, left y-axis) and
superfluid density ps (dashed lines, right y-axis) for the 
PSS-PSF transition at Vdd = 0.238J for L = 8,12,16,20 and 
24 and at T/J = 1/(1.5L). The arrow indicates the phase 
boundary. (b) The scaled structure factor SO^)L2f/v vs. n 
using the critical exponents of the Ising universality class in 
(2+1) dimensions, 2β/ν = 1.0366.
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implying a stable PSS phase. The off-diagonal order present in 
the PSS phase is a result of extra particle or hole pairs (quasi­
particles) which delocalize on top of the CB solid. upon further 
doping, the system can no longer sustain the solid order and 
PSS disappears in favor of PSF via an Ising transition in (2+1)- 
dimensions. In the PSF phase only the off-diagonal long range 
order of PSS survives. The critical point (indicated by an arrow 
in Fig. 2(a)) is determined using finite size scaling with scaling 
coefficients 2β/ν = 1.0366[14]. Figure 2(b) shows the scaled 
quantity S ^ ^ )L 1 0366 as a function of n. The crossing of the 
curves corresponds to the quantum critical point where the 
finite size effects disappear.

Finally, the system forms two independent superfluids (2SF) as 
Vdd/J is lowered at constant n. In this phase ψία = ψ^ = 0 and 
the pair order parameter is trivially non-zero, Ψ = 0. Unlike the 
zero density limit, where a bound state is always formed[15], at 
finite density, many body effects favor 2SF, resulting in a finite 
threshold for stabilization of pairing.

We have also studied the finite temperature behavior of the 
system and determined critical temperatures at which the above 
described quantum phases disappear. The SF-normal transition 
is of Kosterlitz-Thouless (KT) type[16]. We determine its 
critical temperature TKT = π1]2ρ8(ΤκΤ)/2 by finite size scaling 
as described in [17].

Figure 3 shows a plot of ps vs. T/J at Vdd/J = 0.20 and n = 0.3 
(corresponding to 2SF) for different system sizes. The finite 
size scaling procedure used to determine the critical 
temperature is shown in the inset. We find Tkt2sf k
0.255 ± 0.005J. For the PSF phase we find Tktpsf a 
0.08±0.01J at n = 0.3 and Vdd/J = 0.25. The lower critical 
temperature is due to a larger effective mass of the pairs which 
results in a lower effective hopping, a suppression of particle 
delocalization and consequently lower ps.

The disappearance of the PSS phase proceeds in two 
successive stages. At n=0.38, Vdd/J = 0.25 and TktPSS .
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Fig. 3 Superfluid stiffness, ps, as a function of temperature, T/J, at 
Vdd=0.20J and n=0.30 in the 2SF phase at L= 12,16,20 and 
24. As temperature is increased the 2SF phase undergoes 
BKT phase transition at critical temperature Τκτ The error 
bars are within symbol size. The inset shows Tkt(L) vs. 
1/(lnL)2. The dashed line is the linear fit to the simulation 
results (points). The y-intersect is the Tkt for an infinite size 
system.

0.060 ± 0.005J, first the superfluidity of excess particle (hole) 
pairs disappear leaving a normal liquid phase on top of the CB 
solid, reminiscent of a liquid crystal with ps = 0 and S/π,π) = 0. 
Upon further increasing the temperature S/π,π) becomes zero 
at Tc .  0.3J through an Ising-type transition (2β/ν = 1/4 in 
2D). We estimate Tktpss < nK for a typical experimental setup 
with RbCs.

In conclusion we have studied the quantum phases of dipolar 
bosons in a bilayer lattice geometry described by model (1) in 
the regime where pairing can be stabilized. We have observed 
a rich ground state phase diagram featuring pair-superfluidity, 
pair-supersolidity, independent superfluids and checkerboard 
solid phases. These phases are experimentally observable at 
temperatures of the order of nK.
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