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Exploring the Mysteries of the Human Brain 
with Physics

b y  Ro s h a n  Ac h a l  a n d  Jö r n  Da v id s e n

The human brain is arguably the most important 
organ in the body. It regulates biological 
processes, and allows us to think and interpret the 
world around us. In spite of the importance of this 

remarkable organ, little is understood about how it 
functions due to its complexity. one of the principal 
questions regarding the brain is the relationship between 
its neural network structures and their function. With 
advances in technology, the spiking activity of individual 
neurons in networks can be recorded [1], creating data sets, 
which may contain information that can help improve the 
current understanding of this relationship. Many methods 
have been developed [1-4] to extract the causal connections 
and network architectures of neural networks from these 
data.

Each method, however, has limitations that reduce their 
practical utility, leaving the need for improved methods. 
Some of the common limitations include: computationally 
expensive calculations, which make an analysis unfeasible 
for large data sets; prior knowledge of the number of 
largely independent clusters in a network, which isn’t 
always available; and difficulties with detecting and 
including the presence of inhibitory neural connections [1].

The ability to determine when a neural impulse causes the 
activity of other nerve cells, and through which path, is 
imperative to developing new diagnostic and treatment 
techniques for many brain disorders such as epilepsy. It is 
also a cornerstone in understanding complex neural 
functions such as the storage and recall of memory.

To accurately determine the causal connections between 
neurons, both inhibitory and excitatory connections must 
be identified and included; both are not only important in 
the function of the system but also the structure. Here, the 
Functional Clustering Algorithm (FCA)[5] was selected 
for its potential to resolve many of the limitations present

Su m m a r y

We develop an algorithm to determine 
connections between neurons to help better 
understand the relationship between 
structures and functions of neural networks 
in the brain.

in other methods and successfully detect both inhibitory 
and excitatory connections. The benefit of the FCA is that 
it was primarily designed for neural spike train data, 
collected as a neuron fires over time, and it requires no 
initial knowledge of the number of groups in a network [5]. 
Also, activity of each neuron need not be similar for 
analysis, one neuron could only have several spikes where 
as another could have hundreds. It was postulated that 
extreme dissimilarity could hint at the presence of 
inhibitory neurons.

The ability of the FCA to identify and group purely 
excitatory connections between neurons was evaluated 
with a method similar to the one described in [1]. 
Specifically, small simulated neural data sets with known 
architecture and causal connections were created such that 
the results of the algorithm could be directly compared 
with them, to determine its success. The ability of the FCA 
to detect inhibitory neural connections was then evaluated 
by studying an inhibitory connection of varying strength 
between two neurons. Finally, the FCA was tested on 
networks consisting of both excitatory and inhibitory 
connections to evaluate if the presence of inhibitory 
connections hindered the detection of excitatory 
connections, as documented for other methods in [1].

BACKGROUND
Basic Neural Properties
To create appropriate and biologically plausible simulated 
data, the key behaviours of neurons must be understood. 
Neurons are complicated biological systems, which can 
exhibit different behaviours depending on their 
environment and physiological makeup [6]. However, this 
level of complexity is not necessary to intuitively 
understand the basic behaviours of a neuron. A neuron can 
be viewed as a system that has both a rest state and a 
spiking state [7], with the ability to transition between the 
two depending on the applied stimuli. General properties 
of the neuron include the membrane potential, all-or- 
nothing threshold, refractory period and the ability to 
create either excitatory or inhibitory postsynaptic 
potentials in connected neurons. For more specific details 
on the biological structure and functions of neurons, in­
depth discussions can be found in [6,8].
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The membrane potential can be considered as a 
description of the current state of the neuron. For most
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neurons, the resting potential is approximately -65 mV [9]. At 
this potential the neuron is inactive and waiting for stimulation. 
if  the connection (synapse) between two neurons is excitatory, 
then the presynaptic neuron increases the membrane potential 
of the postsynaptic neuron with an excitatory postsynaptic 
potential each time it fires. The postsynaptic neuron is now 
brought closer to its threshold. if  this neuron is stimulated with 
excitatory postsynaptic potentials multiple times in quick 
succession, the sum of the excitations may raise the membrane 
potential passed its threshold (typically between -40 mV and 
-55 mV [10]). Once the membrane potential has been increased 
by any magnitude over its threshold value, the neuron fires a 
characteristic action potential spike that can be measured and 
related to signal transmission. This behaviour is known as the 
all-or-nothing response of the neuron.

Following an action potential spike, the neuron enters a 
refractory period during which the membrane potential is 
brought below its resting potential and the neuron is typically 
unable to immediately fire again. This ensures unidirectional 
travel of the signal from neuron to neuron [8]. With a similar 
mechanism, an inhibitory neuron creates an inhibitory 
postsynaptic potential that lowers the membrane potential of 
the connected postsynaptic neurons. This brings their state 
farther away from the threshold; additional stimulus of the 
postsynaptic neurons is now required for their membrane 
potentials to surpass the threshold and fire a potential spike.

Simulated Neuron Model
To encompass the basic neuronal behaviours discussed above 
and produce biologically relevant data for testing, the 
izhikevich simple neuron 
model[1,9,10] was selected. It is 
a reduction of Hodgkin- 
Huxley-type neuronal models 
to a two-variable system [10].
This model is able to reproduce 
the spiking patterns and 
behaviours of many types of 
neurons [10], making it 
extremely versatile. The 
versatility of the model gives 
the capability to test different 
types of neurons in networks 
without having to use a 
different model for each. In 
addition to the versatility of the 
izhikevich neuron model, one 
of its major benefits is that it is 
not computationally expensive, 
unlike most Hodgkin-Huxley- 
type models. A basic first order 
Euler’s method of integration 
can be utilized to numerically 
solve the system. stochastic 
stimuli can also be added to the 
model to simulate the intrinsic

noise found in biological neurons. The intrinsic noise is 
necessary to increase the biological plausibility of the model 
because living neurons can often spontaneously fire without 
stimulation from other neurons[1,8,10]. Figure 1 shows an 
example of a small scale neural network that was created for 
testing, with both excitatory neurons (solid) and inhibitory 
neurons (dashed) present.

METHODS
The Functional Clustering Algorithm (FCA)
The FcA was first implemented according to the specifications 
presented in [5]. It was designed to analyze neural spike data; 
however, it is generic enough to be applied to any type of 
discrete multivariate event data [5], which makes it of interest 
for other applications as well[11]. First, the algorithm calculates 
the similarity in pairs between the activities of each neuron 
with all other neurons in the network according to a similarity 
metric. These values are used to form a matrix of similarity 
values. Next, spike train data from the pair of neurons with the 
largest similarity are removed from the rest of these data and 
joined (clustered) into a new data set. This allows for continued 
comparison between them and the other remaining 
(unclustered) neurons. This process is repeated until there are 
no significant matches left, or all the neurons have been joined 
into a single spike train. Figure 2 illustrates the joining process 
for sample data from a network of three neurons.

To establish the significance of the similarity between two 
neurons, the distance in time from each spike in one train to the 
closest in the other, and vice versa, is summed into a distance

value; the smaller this distance 
value is the more likely the 
connection is significant. The 
significance of this value is then 
determined by comparing it to a 
large distribution of distance 
values generated from random 
surrogate data pairs created 
from the original data.

RESULTS,
CONCLUSION AND 
OUTLOOKS
Through working with the FcA 
in various testing scenarios a 
new algorithm was also devel­
oped, the First pass clustering 
Algorithm (FPCA), which 
matched the functionality of the 
FCA at a reduced computational 
expense. This new algorithm 
also has the potential to provide 
additional network connectivity 
information that the FCA cannot 
provide.

Fig. 1 Example of a small scale neural network that was created 
for testing, with both excitatory neurons (solid) and 
inhibitory neurons (dashed) present. The ratio of excitatory 
neurons to inhibitory neurons of 4:1 matches that found in a 
typical mammalian cortex [10] to increase the biologically 
plausibility of the simulations. The excitatory connections 
between neurons were successfully detected, even in the 
presence of the inhibitory neuron.
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Fig. 2 A graphical representation of three data trains from neurons 

i, j,  and, k before the first iteration of the FCA. Each vertical 
line represents a spike in the membrane potential of that 
neuron. in the first iteration the algorithm has determined 
that neuron-i and neuron-j are connected, so their spike 
trains are joined. The process is repeated until there are no 
more significant matches, or all of the neurons have been 
joined.

The FCA and its derivative, the FPCA, were found to be 
insensitive to the presence of inhibitory connections between 
neurons. The algorithms with the current similarity metric 
provide no way of distinguishing an inhibitory connection 
between neurons and no connection at all. In their present state 
the FCA and the FPCA are, hence, unable to resolve the 
limitation of other algorithms in detecting inhibitory 
connections.

In terms of excitatory connections, the FCA and FPCA were 
successful in identifying causally connected clusters of neurons 
in all of the networks tested. in networks consisting of both 
excitatory and inhibitory connections, both algorithms were 
also able to successfully identify the excitatory causally 
connected clusters. The presence of the inhibitory connections 
in the small scale tests did not interfere with the algorithms’ 
ability to group the excitatory connections, which is a 
limitation present in other methods [1].

The FPCA was also able to determine the specific excitatory 
connections between neurons within a cluster in a large number 
of test networks. There were a few networks, however, where 
the FPCA was unable to successfully determine the specific 
excitatory network connections within a cluster of neurons in 
that network, while still successfully identifying the cluster 
itself. There is potential that, with further refinement, the 
FPCA will be able to overcome this and reliably detect the 
specific excitatory network connectivity between neurons in all 
networks. if  this is possible, the FPCA will provide a new tool 
to help study the relationships between neural network 
structures and their functions in the brain. This will ultimately 
aid in working towards a better understanding of one of the 
fundamental questions regarding the human brain; what is the 
relationship between its neural network structures and their 
function?
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