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A major goal in nuclear physics is to understand 
how nuclear binding, structure, and reactions 
can be described from the underlying interac
tions between individual nucleons [1,2]. We want 

to compute the properties of an A-nucleon system as an A- 
body problem with free-space nuclear interactions that 
describe nucleon-nucleon (NN) scattering and the two- 
nucleon bound-state. Properties of interest for a given 
nucleus include the ground-state binding energy, excita
tion spectrum, one- and two-nucleon density and momen
tum distributions, electromagnetic moments and transi
tions. We also wish to describe the interactions of nuclei 
with electrons, neutrinos, pions, nucleons, and other 
nuclei. Such calculations can provide a standard of com
parison to test whether sub-nucleonic effects, such as 
explicit quark degrees of freedom, must be invoked to 
explain an observed phenomenon. They can also be used 
to evaluate nuclear matrix elements needed for some tests 
of the standard model, and to predict reaction rates that are 
difficult or impossible to measure in the laboratory. For 
example, all the astrophysical reactions that contribute to 
the Big Bang or to solar energy production should be 
amenable to such ab initio calculations.

To achieve this goal, we must both determine reasonable 
Hamiltonians to be used and devise reliable many-body 
methods to evaluate them. Significant progress has been 
made in the past decade on both fronts, with the develop
ment of a number of potential models that accurately 
reproduce NN elastic scattering data, and a variety of 
advanced many-body methods. In practice, to reproduce 
experimental energies and transitions, it appears necessary 
to add many-nucleon forces to the Hamiltonian and elec
troweak charge and current operators beyond the basic 
single-nucleon terms. While testing our interactions and 
currents against experiment, it is also important to test the 
many-body methods against each other to ensure that any 
approximations made are not biasing the results.

For s-shell (3- and 4-body) nuclei, a number of accurate 
many-body methods have been developed; a benchmark 
test in 2001 compared seven different calculations of the
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binding energy of the 4He nucleus using a semi-realistic 
test Hamiltonian and obtained agreement at .0 .1%  [3]. 
Multiple few-body methods also agree quite well on low- 
energy three-nucleon (3N) scattering and progress is being 
made on larger scattering problems [4,5]. For p-shell 
(5<A< 16) and larger nuclei, three methods that are being 
developed and checked against each other are the no-core 
shell model (NCSM) [6], coupled-cluster expansion 
(CCE) [7], and quantum Monte Carlo (QMC) [2]. This arti
cle will focus on the quantum Monte Carlo method as an 
example of modern ab initio nuclear theory. We will 
describe the nature of the problem, a method of solution, 
and present some of the successes that have been achieved 
as well as future challenges that must be faced.

NUCLEAR HAMILTONIAN
At present we have to rely on phenomenological models 
for the nuclear interaction; a quantiative understanding of 
the nuclear force based on non-perturbative quantum chro
modynamics (QCD) is still some distance in the future. 
We consider nuclear Hamiltonians of the form:

H  = Σ K i + Σ vij + Σ  Vi j k■
i i< j  i < j  <k

Here Kt is the kinetic energy, Vy is an NN  potential, and 
Vyk is a 3N potential. Realistic NN  potentials fit a large 
scattering database; models such as the Nijm I, Nijm II, 
and Reid93 potentials of the Nijmegen g roup[8], 
Argonne ν 18 (AV18) [9], and CD Bonn [10], fit more than 
4,000 elastic data at laboratory energies <350 MeV with a 
χ 2/datum~1. These potentials are all based on pion 
exchange at long range, but inevitably are more phenom
enological at shorter distances. Their structure is compli
cated, including spin, isospin, tensor, spin-orbit, quadratic 
momentum-dependent, and charge-independence-break
ing terms, with ~40 fitted parameters. However, these 
sophisticated NN  models are generally unable to repro
duce the binding energy of few-body nuclei such as 3H 
and 4He without the assistance of a 3N potential[1].

Multi-nucleon interactions can arise because of the com
posite nature of the nucleon and its corresponding excita
tion spectrum, particularly the strong Δ(1232) resonance 
seen in πN  scattering. The expectation value of 3N poten
tials is much smaller than that for NN forces, but due to the 
large cancellation between one-body kinetic and two-body 
potential energies, they can provide significant corrections 
to nuclear binding. Fortunately, four-nucleon potentials
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appear small enough to ignore at present. Models for the basic 
two-pion-exchange 3N potential date from the 1950s [11]; more 
sophisticated models have followed, including the Tucson- 
Melbourne [12], Urbana [13], and Illinois [14] models. In princi
ple, the 3N potential could have a far more complicated 
dependence on the spins, isospins, and momenta of the nucle
ons than has been studied to date, but there is limited informa
tion by which to constrain the models. Three-nucleon scatter
ing data provides some information, but very little partial-wave 
analysis has been done which would help unravel the structure. 
Energies and excitation spectra of light nuclei provide the best 
current constraints for 3N potentials, especially isospin T  = § 
interactions, which are particularly important for neutron stars. 
Hamiltonians based on chiral effective theories are under 
development that should provide a more consistent picture of 
both NN  and many-nucleon forces, while also making closer 
connections to the underlying symmetries of QCD [15].

An important additional ingredient for the evaluation of elec
troweak interactions of nuclei is a consistent set of charge and 
current operators. The standard impulse approximation (IA) 
single-nucleon contributions need to be supplemented by 
many-nucleon terms that again can be understood as arising 
from the composite nature of the nucleons and the meson 
exchanges that mediate the interactions between them. It is 
important to use currents that satisfy the continuity equation 
with the Hamiltonian. In practice, two-nucleon operators give 
the bulk of the correction to the IA terms; they can be 20% cor
rections for magnetic moments and transitions, although gener
ally much less for electric transitions and weak decays [1].

For the present article, we consider a Hamiltonian containing 
the AV18 NN  potential and Illinois-2 (IL2) 3N potential. The 
AV18 model can be written in an operator format as:

vij = Σ  (r,  ,p=1,22
O f 11 = [1, σ ,. σ } , S ÿ , L · S, L2, L ^ ,. · σ , , (L · S)2] ® [1, τ, · τ, ], 

Of 15,22 = [1,σ , σ , ,S , ,L ·S]® [T, ,(τ* + τ , )].

Here σ (τ) is the Pauli spin (isospin) operator, L (S) is the pair 
orbital (spin) angular momentum operator, and S .  = 3σ;· · ifjj 
σ. · fjj -  σ ί ·σ. is the tensor operator, which can exchange spin 
and orbital angular momenta. The first fourteen terms are 
isoscalar, or charge-independent, i.e., they do not mix isospin 
states. The first eight of these terms, up through spin-orbit, are 
the most important. A  good semi-realistic model designated 
AV8' has been constructed (and used in the 4He benchmark 
paper mentioned above) using just these operators; it repro
duces S- and P-wave NN  scattering phase shifts and the two- 
nucleon bound state (deuteron) very well. The central, spin- 
isospin, and tensor-isospsin components are shown in Fig. 1 by 
solid lines with the left-hand scale; the central potential has its 
maximum of .2000 MeV at r = 0.

The six terms quadratic in L are smaller, but are needed to fit 
higher partial waves in NN  scattering. The last eight terms

break charge-independence, being either isovector (τή + τ,.), or 
isotensor (Tj.= 3τζίτζ.  -  τ ·τρ , in character; they are generally 
small, and differentiate between pp, np and nn forces. Their 
origin is in the electromagnetic (Coulomb, magnetic moment, 
etc.) interaction, and the strong interaction (m% 0 -  mn± effects, 
ρ-ω meson mixing, etc.).

The IL2 3N potential includes a long-range two-pion-exchange 
piece, three-pion-exchange ring terms, and a phenomenologi
cal short-range repulsion. The spin- and isospin-dependence is 
fixed by the rules of π Ν interactions, while the overall strength 
is characterized by four parameters determined by a fit to 
~20 nuclear energy levels when used with AV18 in the calcula
tions described below.

QUANTUM MONTE CARLO METHODS
The many-body problem with the full Hamiltonian described 
above is uniquely challenging. We want to solve the many- 
body Schrôdinger equation

H ψ  ( r ls ^  - , rA; ^  -  , sA; ^  ^  -  , A  
= Ε ψ  (r i ,r2, ··% rA; ^  -  , sa; ti  t2, -  , A

where s, = ± 2 are nucleon spins, and t, = ± 2 are nucleon 
isospins (proton or neutron). This is equivalent to solving, for 
an A-body nucleus with Z  protons, 2A x (A ) complex coupled 
second-order differential equations in 3A-dimensions. For 12C, 
this number is 3,784,704 coupled equations in 36 variables! (In 
practice, for many nuclei, symmetry considerations can reduce 
the number by an order of magnitude.) The coupling is quite 
strong; the expectation value +ντ  ) corresponding to the tensor- 
isospin operator Sxtx-rj is .  60% of (ν .. ). This is a direct conse
quence of the pion-exchange nature of nuclear forces (and indi
rectly, the approximate chiral symmetry of QCD). 
Furthermore, (ν. ) = 0 if there are no tensor correlations in the 
wave function, so we cannot perturbatively introduce these 
couplings.
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The first application of Monte Carlo methods to nuclei interact
ing with realistic potentials was a variational (VMC) calcula
tion by Pandharipande and collaborators [16], who computed 
upper bounds to the binding energies of 3H and 4He in 1981. 
Six years later, Carlson [17] improved on the VMC results by 
using the Green’s function Monte Carlo (GFMC) algorithm, 
obtaining essentially exact results (within Monte Carlo statisti
cal errors of 1%). Reliable calculations of light p-shell nuclei 
started to become available in the mid 1990s and are reviewed 
in [2]; the most recent results for A  = 9,10 nuclei and 12C can 
be found in [18,19].

A VMC calculation finds an upper bound E v  to an eigenenergy 
E0 of the Hamiltonian by evaluating the expectation value of H  
in a trial wave function, Ψτ:

e  A H A A X A> e
V ψ ·ιψ  "

Parameters in ΨΓ are varied to minimize E v , and the lowest 
value is taken as the approximate energy. A good trial function 
is [2]

\Ψ τ ) i + Σ  U*
i < j< k

s  Π  (1+ Uj )

The central, spin-isospin, and tensor-isospin correlations 
obtained for 4He are shown in Fig. 1 as dashed lines measured 
by the right-hand scale. The f  is small at short distances, to 
reduce contributions from the repulsive core of vc, and a max
imum near where v c is most attractive, while the long-range 
decrease keeps the nucleus confined. The u and û  are smallστ tx
and have signs opposite to νστ and ν χ  as expected from pertur
bation theory.

Perturbation theory is also used to motivate the three-body cor
relation U ijk  = -ε ν ίβ( ) where r  =  yr, y  a scdmg
parameter, and ε a (small negative) strength parameter. 
Consequently, U jk has the same spin, isospin, and tensor 
dependence that V jk contains.

The ΨΓ is a vector in the spin-isospin space of the A  nucleons, 
each component of which is a complex-valued function of the 
positions of all A  nucleons. The tensor correlations mix spin 
and spatial angular momenta, so that all 2A spin combinations 
appear. Because the nuclear force is mostly isoscalar, the con
servation of isospin results in fewer isospin possibilities, some
what less than (A). For M j  = 0 states there is an additional fac
tor of 2 reduction. The total numbers of components in the vec
tors for 4He, 6Li, 8Be, 10B, and 12C are 16, 160, 1792, 21504, 
and 270336, respectively.

where Uj  and Ujk  are non-commuting two- and three-body 
correlation operators induced by ν j and Vj k, respectively, S  is 
a symmetrizer, and the Jastrow wave function Ψ j  is

\Ψ  j ) = Π  fc ( r  ) \Φ ,  ( J  )> '
i<j

Here the single-particle A-body wave function ΦαΟΝΤ is 
fully antisymmetric and has the total spin, parity, and isospin 
quantum numbers of the state of interest, while the product 
over all pairs of the central two-body correlation f c(rj )  keeps 
nucleons apart to avoid the strong short-range repulsion of the 
interaction. The long-range behavior of f c and any single-parti
cle radial dependence in Φα (which is written using coordinates 
relative to the center of mass or to a sub-cluster CM to ensure 
translational invariance) control the finite extent of the nucle
us.

The two-body correlation operator has the structure

Uij = Σ  up (rij ') ° j ’p=2,6

where the 01’ are the leading spin, isospin, and tensor operators 
in ν j . The f(r) and uJ Kr) are obtained by numerically solving 
a set of six Schrödinger-like equations: two single-channel for 
S=0, T= 0  or 1, and two coupled-channel for S=1, T= 0  or 1, with 
the latter producing the important tensor correlations [20]. 
These equations contain the bare V j and parametrized 
Lagrange multipliers to impose long-range boundary condi
tions of exponential decay and tensor/central ratios.

Constructing the trial function with the pair spin and isospin 
operators in Uj  requires P  = A(A - 1)/2 sparse-matrix opera
tions on this vector (more if Uj k triples are used). Acting on the 
trial function with V j then requires a sum of P  additional oper
ations for each spin or isospin term in the potential. Kinetic 
energy contributions are evaluated by finite differences, i.e., by 
reconstructing ΨΓ at 6A slightly shifted positions and taking 
appropriate differences. Quadratic momentum-dependent L2 
and (L'S)2 terms in Vj require additional derivatives, but vari
ous tricks can be used to reduce the number of operations, 
including rotation to a frame where fewer differences are need
ed, and Monte Carlo sampling these relatively short-ranged 
terms when the two nucleons are far apart. Evaluating Vj k 
requires additional operations, but these terms can also be sam
pled when the nucleons are far apart. The 3A-dimensional spa
tial integration is carried out by a standard Metropolis Monte 
Carlo algorithm [21] with sampling controlled by a weight func
tion WR) .|Ψ τ |2, where R = r  ̂r^, ... Γα  specifies the spatial 
configuration. Thus more (less) time is spent evaluating the 
integral where the trial function is large (small).

VMC calculations produce upper bounds to binding energies 
that are . 2% above exact results for A = 3,4 nuclei. However, 
as A increases, our present trial functions get progressively 
worse and are unstable against breakup into sub-clusters. For 
example, our 7Li trial function is more bound than 6Li, but less 
bound than 4He plus 3H. Because any wave function can be 
expanded in the complete set of exact eigenfunctions, the inad
equacy of the trial function can be attributed to contamination 
by excited state components in ΨΓ.
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The Green’s function Monte Carlo method provides a way of 
systematically improving on the VMC trial state by removing 
such contamination and approaching the true lowest-lying 
eigenstate of given (Jπ;Τ) quantum numbers [2]. GFMC proj
ects out the lowest-energy eigenstate from Ψ Γ by a propagation 
in imaginary time:

such that the average over all discarded configurations of 
Ψ(τ)ΐ · Ψ Τ is 0. Thus, if Ψ Γ were the true eigenstate, the dis
carded configurations would contribute nothing but noise to 
(H). In practice, a final few (10-20) unconstrained steps are 
made, before evaluating the energy, to eliminate any bias from 
the constraint.

ψ  (τ) = exp[-( H  -  e  ο)τ]Ψτ ,

= e~( É0 -Εο)τ x [Ψ 0 + X a ,.e“(Ei-Εο)τΨ ], 
lim Ψ(τ) ^  Ψ 0,

where E0 is a guess for the exact EQ. If sufficiently large τ is 
reached, the eigenvalue E0 is calculated exactly while other 
expectation values are generally calculated neglecting terms of 
order |Ψ0 -  Ψ Γ\2 and higher. In contrast, the error in the varia
tional energy, E v, is of order |Ψο -  Ψ Γ\2, and other expectation 
values calculated with Ψ Γ have errors of order |Ψο -  Ψ Γ| .

The evaluation of e~(H-E0y  is made by introducing a small 
time step, Δτ = τ/n (typically Δτ = 0.0005 MeV-1),

Ψ (τ) = |a ( H-Éo) Λτ] "ψτ = β "ψ  T.

where G is the short-time Green’s function. Again, Ψ(τ) is a 
vector function of R, and the Green’s function Gttp(R',R) is a 
matrix function of R and R ' in spin-isospin space:

Expectation values with GFMC wave functions are evaluated 
as “mixed” estimates

(^ M ix e d
(Ψ  (τ) | O |Ψ Γ) 

Ψ (τ) |Ψ  τ '

The desired expectation values would have Ψ(τ) on both sides, 
but if the starting trial wave function is reasonably good, we 
can write Ψ(τ) = Ψ Γ+ δΨ(τ), and neglecting terms of order 
[δΨ(τ)]2, we obtain the approximate expression

(θ(τ))
(Ψ (τ) | O | Ψ  (τ)) 

Ψ  (τ)|Ψ (τ) (0 (τ^Μ ^ + K 0 ( τ ^ Μ ^ -<  O v  ].

where (O 'v  is the variational expectation value. More accurate 
evaluations of (Ο(τ), are possible, essentially by measuring the 
observable at the mid-point of the path. However, such esti
mates require a propagation twice as long as the mixed esti
mate and require separate propagations for every (O, to be 
evaluated.

Gap(R , R) = (R ' , a | e~(H-Éo)î R , β)

where α, β denote the spin-isospin components. The repeated 
operation of G ^ R ^ R )  in coordinate space results in a multi
dimensional integral over 3An (typically more than 10,000) 
dimensions. This integral is also done by a Metropolis Monte 
Carlo algorithm.

The short-time propagator is approximated as a symmetrized 
product of exact two-body propagators and includes the 3N 
potential to first-order. The G ^ R ^ R )  can be evaluated with 
leading errors of order (Δτ)3, which can be made arbitrarily 
small by reducing Δτ (and increasing n correspondingly). In the 
benchmark calculation [3] of 4He, the GFMC energy had a sta
tistical error of only 20 keV and agreed with the other best 
results to this accuracy (< 0.1%). Various tests indicate that the 
GFMC calculations of p-shell binding energies have errors of 
1-2%.

In practice, the operator in the mixed estimate acts on the 
explicitly antisymmetric Ψ Γ, which helps project out boson 
contamination in Ψ(τ) and is particularly convenient for evalu
ating operators with derivatives. The expectation value of the 
Hamiltonian is a special case, because half of the propagator 
can be commuted to the other side of the mixed expectation 
value, giving Ψ(τ/2) on either side; consequently the energy 
has a variational upper bound property and converges to the 
eigenenergy from above.

As described above, the number of spin-isospin components in 
Ψ Γ grows rapidly with the number of nucleons. Thus, a calcu
lation of a state in 8Be involves about 30 times more floating
point operations than one for 6Li, and 10B requires 25 times 
more than 8Be. Calculations of the sort being described are cur
rently feasible for A # 10. A few runs for the ground state of 12C 
have been made; these require ~100,000 processor hours on 
modern massively parallel computers or ~1017 floating point 
operations for a single state.

For more than four nucleons, GFMC calculations suffer signif
icantly from the well-known fermion sign problem; the 
^ ( R ',R) is a local operator that does not know about global 
antisymmetry. Consequently it can mix in boson solutions that 
are generally (much) lower in energy. This results in exponen
tial growth of the statistical errors as one propagates to larger 
τ, or as A is increased. For A>8 the resulting limit on τ is too 
small to allow convergence of the energy. This problem is 
solved by using a constrained-path algorithm [22], in which 
configurations with small or negative Ψ(τ)ΐ · Ψ Γ are discarded

RESULTS
The imaginary-time evolution of GFMC calculations for the 
first three ( J π; T=0) states in 6Li is shown in Fig. 2. The ener
gy is evaluated after every 40Δτ propagation steps and is 
shown by the solid symbols with error bars for the Monte Carlo 
statistical errors. The Ev  = Ε(τ = 0) for the 1+ ground state is at 
-28 MeV, above the threshold for breakup into separted a (4He) 
and deuteron (2H) clusters. However, the energy drops quite 
rapidly and is already stable against breakup after only a few
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propagation steps. The final energy and statistical error is 
obtained by averaging over Ε(τ) once the energy is stable. The 
rapid drop in Ε(τ) for small τ indicates that the Ψ Γ has a small 
contamination of very high (>100 MeV) excitation; GFMC is 
particularly efficient at filtering out such errors.

The 3+ excited state is actually unstable against cluster 
breakup, but is physically narrow (decay width Γ=0.024 MeV) 
and the GFMC energy is stable. However, the 2+ excited state 
is physically wide (Γ=1.3 MeV) and after an initial rapid drop 
from the -24  MeV starting energy, it continues to drift lower, 
so a straight average is not reasonable. In principle, if the cal
culation is carried to large enough τ, the energy should con
verge to the sum of α and deuteron energies. In this case we 
extrapolate linearly back to the end of the initial drop as 
marked by the open star in Fig. 2 to estimate the energy of the 
state.

Figure 3 compares GFMC calculations of energy levels of 
selected nuclei with the experimental values (right bars). The 
calculations use just the AV18 NN  potential alone (left bars) or 
with the IL2 3Npotential (middle bars). The figure shows that 
calculations with just a NN  potential underbind the A >3 nuclei, 
with the underbinding getting worse as A increases. In addition 
many spin-orbit splittings, such as that of the 2 -  2 levels in 
7Li, are too small. The addition of IL2 corrects these errors and 
results in good agreement with the data; for 53 levels in 
3 # A # 10 nuclei the rms deviation from experiment is only 
740 keV. The case of 10B is particularly interesting, as the cal
culation with just AV18 incorrectly produces a 1+ ground state 
instead of the correct 3+. As the figure shows, including IL2 
reverses the order of the two levels and produces the correct 
ground state. This result has been confirmed by NCSM calcu
lations using different realistic NN  and 3N potentials [23].

Many of the states shown in Fig. 3 are strong stable, i.e., they 
can decay only by electromagnetic or weak transitions, if at all. 
Others are actually resonant states that decay by nucleon or α 
emission. As discussed above, good energies can still be

Fig. 3 GFMC energy level calculations for various nuclei using the 
AV18 (blue) and AV18+IL2 Hamiltonians (red) compared 
with experiment (green). As can be seen, the AV18+IL2 
results are consistently lower than AV18 alone, and are in 
much better agreement with experiment.

obtained for resonant states that are physically narrow by the 
techniques discussed above, but for wide states with decay 
widths Γ > 0 .2  MeV, a true scattering calculation is more 
appropriate.

A nuclear GFMC calculation was recently completed for the 
case of n+α scattering [24]. The basic technique is to confine the 
nucleons in a box, with a radius large enough so that a nucleon 
at the edge is far enough away from the others (inside the α) 
that it is in the asymptotic scattering regime. A logarithmic 
boundary condition is imposed on the trial function, and a 
GFMC propagation is made that preserves the boundary condi
tion while finding the energy of the system. The combination 
of energy and logarithmic derivative at the boundary radius 
gives a phase shift δ(Ε). A number of calculations are made for 
different boundary conditions to map out δ(Ε), from which par
tial-wave cross sections can be calculated and resonance poles 
and widths extracted. This is illusIrated in Fig. 4, where n+α 
scattering in the i  , 2 , and f channels, calculated with
AV18+IL2, is plotted (solid symbols) and compared to an 
^-matrix analysis of experimental data (solid lines). The agree
ment is quite encouraging, but this is by far the simplest of 
many scattering cases we would like to study.

In addition to energies of nuclear states, we calculate a variety 
of other properties, such as one- and two-nucleon density and 
momentum distributions. An example is shown in Fig. 5 where 
the point proton and neutron densities of 4A8He are shown. The 
α is extremely compact and has essentially identical proton and 
neutron densities. In the halo nuclei 6’8He (so-called because of 
the weakly bound valence neutrons and consequently extended 
neutron distribution) the α core is only slightly distorted. 
However, the valence neutrons drag the center of mass of the α 
around and thus spread out the proton density. Recent neutral 
atom trapping experiments that measure the isotope shift of
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atomic transitions in these nuclei, combined with extremely 
accurate atomic theory, have determined the charge radius dif
ferences among the helium isotopes [25]. GFMC calculations of 
these charge radii are quite challenging because the neutron 
separation energies are only 1-2 MeV, so absolute energies of 
the 4,6’8He nuclei must be calculated to much better than our 
standard 1-2% accuracy. By using variations of the AV18+IL2 
Hamiltonian for the GFMC propagator, it is possible to map 
out the dependence of the charge radius on separation energy, 
and then read off a prediction from the experimental separation 
energy. The resulting radii agree with atom trap experiments at 
the 1-2% level[26].

CONCLUSIONS
The VMC and GFMC quantum Monte Carlo methods dis
cussed here have established a new standard of comparison for 
the ab initio study of light nuclei using realistic interactions. 
There are many calculations of interest beyond those discussed 
here. These include the study of the small isovector and isoten
sor terms in the nuclear Hamiltonian, which contribute to the 
energy difference between “mirror” nuclei like 3H -3He and 
7L i-7Be. The microscopic origin of these forces is not fully 
understood, so the ability to test interaction models against 
experimental energies is an important tool.

Electromagnetic and weak transitions between different 
nuclear states and the response of nuclei to scattered electrons, 
neutrinos, and pions is also of considerable interest. The first 
GFMC calculations of magnetic dipole (Ml), electric quadru- 
pole (E2), and weak Fermi (F) and Gamov-Teller (GT) transi
tions in light nuclei are just becoming available [27]. VMC cal
culations have been made for the electromagnetic elastic and 
transition form factors in 6L i [28] and for spectroscopic factors 
in the 7Li(e,e'p) [29] reaction which are in good agreement with 
experiment. Calculations of spectroscopic amplitudes such as

Fig. 5 Point proton and neutron densities for helium isotopes.

(8Lí(J) + n(/}|9Li(J')), where the nuclei are in a number of dif
ferent possible excited states, are being used as input to DWBA 
analyses of radioactive beam experiments, such as 
2H(8Li,p)9L i [30]. There have also been VMC studies of astro- 
physically interesting radiative capture reactions such as 
d(a,y)6Li, t(a,y)7Li, and 3He(a,y)7Be [31]. GFMC calculations 
of such reactions should be feasible in the next few years.

The chief drawback of the present VMC and GFMC methods 
is the exponential growth in computational requirements with 
the number of nucleons. It will be some time before 4=11,12 
calculations become routine. One of the challenges in moving 
to larger nuclei is the need to transition from parallel comput
ers with hundreds of processors, to the next generation of mas
sively parallel machines with tens of thousands of processors. 
With present machines tens of configurations reside on each 
processor, but in future one configuraton might be spread over 
ten processors, which will require some major programming 
adjustments.

To reach larger nuclei, a new quantum Monte Carlo method, 
auxiliary field diffusion Monte Carlo (AFDMC), is under 
development and has already been used for larger nuclei like 
16O and 40Ca using slightly simpler interactions [32]. The chief 
advantage of this method is that, by linearizing the problem 
with the introduction of auxiliary fields, spins and isospins can 
be effectively sampled, rather than completely summed over. 
The other ab initio nuclear many-body methods, NCSM and 
CCE, are also pushing on to larger nuclei, and we expect con
tinued rapid progress in this field.
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